Subject
  • DA
  • Change subject
Classes offered

Data Analytics

Need more info? Visit the Information Systems and Technology website.

DA 310 Introduction to Analytics • 5 Cr.

Introduces the importance of data management, data analysis and data representation. Includes the use of common statistical tools and their applications in decision-making and research. Emphasis is on quantitative and technology based analysis of real world problems to improve decision-making in various disciplines, along with report writing and presentation skills. Prerequisite: Admission into the program and BUSIT 103 with a C or better and MATH138 or MATH& 141 with a C or better; or permission of instructor.

DA 320 Data Acquisition and Management • 5 Cr.

Learn concepts of data collection and management. Topics include collecting data ethically from different sources, assessing data quality, learning techniques to clean, process, and store big data while maintaining privacy and security. Students research real-world examples, using cloud techniques and common statistical software to produce reports and presentations. Admission to the BAS Data Analytics program and BUSIT 103 with a C or better; or admission to the BAS Information Systems and Technology Business Intelligence program and BUSIT 103; or ISIT 331 with a grade of C or better; or permission of the instructor.

DA 410 Multivariate Analysis • 5 Cr.

Introduce various statistical methods for analyzing more than one outcome variable and understanding the relationships between variables. Topics include a variety of multivariate models such as MANOVA, discriminant functions, canonical correlation, and cluster analysis. The focus will be on real world examples from a variety of sources and using statistical software. Prerequisite: MATH 342 with C or better. Recommended: DA 460.

DA 420 Predictive Analytics • 5 Cr.

Students will study the process of formulating business objectives, data selection, preparation, and partition to successfully design, build, evaluate, and implement predictive models for a variety of practical business applications. Topics include a variety of predictive models such as classification, decision trees, machine learning, supervised and unsupervised learning. Prerequisite: MATH 342 with a C or better, or permission of the instructor. Recommended: DA 460.

DA 430 Marketing Analytics • 5 Cr.

This course introduces a quantitatively oriented view of marketing strategy and provides tools and methods to leverage data to inform marketing strategies. Topics may include a variety of marketing analytics strategic models and metrics such as competitive analysis, segmentation, targeting and positioning. The focus will be on real world examples from a variety of sources and using statistical software. Prerequisite: DA 310 with a C or better, or permission of the instructor.

DA 460 Data Analysis with Software and Programming • 5 Cr.

This course introduces modern software and programming languages for effective data analysis, such as R and Python. Students will learn how to configure software environment, apply programming concepts, build statistical models, and write code to analyze data sets. Prerequisite: Admission into BAS Data Analytics program and BA 240 with a C or better and PROG 108 with a C or better, or permission of instructor.

DA 485 Data Analytics Capstone Project • 5 Cr.

In this integrative learning course, students will engage in planning, designing, implementing and presenting a project demonstrating the attainment of business analytics program learning outcomes, as well as professional competencies and career readiness. Prerequisite: DA 420 with a C or better, or permission of instructor.